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If 7 is a permutation of {1,...,n}, we write t = (t1,...,t,) for its
cycle type, where t, denotes the number of p-cycles in 7.

Property

T is conjugation-invariant
<~
conditionally given t, 7 is a uniformly random t-cyclic permutation.

—> we may study uniform permutations with given cycle types.
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m Uniform permutations
(random cycle type with explicit distribution)
m Uniform involutions
(random cycle type with t; + 2t = n and t; = /n)

m Uniform involutions with no fixed points
(deterministic cycle type with 2t, = n)

m Ewens random permutations
Po(T) o2t

and their generalizations.
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I. Conjugation-invariance

Aim: to study various statistics of such permutations
— monotone subsequences, records, patterns... but how?

m Uniform permutations: many tools (combinatorial, algebraic,
geometric, etc.).

m Can be adapted for random involutions, but harder in the broader
setting of conjugation-invariance.
m Fulman, Kim and Lee: exact computation for the numbers of
descents and peaks.
m Kammoun: several universality results via coupling (under as-
sumptions on the number of cycles).
m Hamaker and Rhoades: pattern counts via representation theory
(idem).
Here: a geometric approach that works for all cycle types, under
minimal hypotheses.
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Il. A geometric construction

Mapping a point set to a permutation
Let Z ={Z1 = (X1, Y1), ..., Zn = (Xu, Yn)} C [0,1]? with distinct
x-coordinates and distinct y-coordinates. Define 7 = Perm (Z) by:

7(i) = j iff the i-th point from the left is the j-th point from the
bottom.

Perm(Zy, Zo, Zs3, Z4, Zs, Z6, Z7) = 4276315
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Recovering uniform permutations (e.g. Hammersley '70)

Let Z = {Z,...,Z,} be iid. Unif ([0,1]?). Then 7 = Perm (Z)
is a uniform permutation of {1,..., n}.

Recovering random involutions (Baik and Rains '99)

Let Z* be the symmetry of Z with respect to the diagonal of [0, 1]2.
Then 7 = Perm (Z U Z*) is a uniform involution of {1, ...,2n} with
no fixed point.

Idea: the set Z U Z* is symmetric w.r.t. the diagonal, and has the
same x-coordinates as y-coordinates.

If (X,Y) has relative position (i,j) in this set, then (Y, X) has
relative position (j, 7). Thus 7(i) = j and 7(j) = i.
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Il. A geometric construction

Fix a cycle type t of size n. Fix any t-cyclic permutation s.

Recovering uniform t-cyclic permutations (D. '24)

Let (Uj);<j<, be i.i.d. Unif ([0,1]). For each i, set Z; := (Uj, Uy(y)-
Then 7 = Perm (Z;,1 < i < n) is a uniform t-cyclic permutation.

(UJnU/)’ 777777777777777777777 :
g s || Geometric construction of a
‘ ] (2,1,1,1)-cyclic permutation.
I | 7=8103741151962

=(3)o(9)o(1,8)0(4,7,5)0(2,10,6,11)

Property: if R is a rectangle which
‘ ‘ | does not intersect the diagonal, it
e 3 | contains ~ n-Leb(R) i.i.d. uniform
’ points.
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I1l. Application: number of records

Definition
A record in T is an index i s.t. for all j < i, we have 7(j) < 7(i).
rec (1) := number of records in 7.

T=24153 ; rec(r)=3

Theorem

If 7, is a uniform permutation of size n, then

rec(7,) —logn  (d)
—_— — 0,1).
Togn  noo N(0,1)

Q: uniform permutations in given conjugacy classes 7
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I1l. Application: number of records

If 7 = Perm (Z), a point (X, Y) € Z corresponds to a record in 7
iff there is no other point in its up-left corner [0, X] x [Y,1].
Consider the box C =[0,1/2] x [1/2,1].

Few points Fixed points
\

Few points—

Fixed points\




I1l. Application: number of records

Records of conjugation-invariant permutations (D. '24)

Let 7, be conjugation-invariant permutations of size n, with (ran-

dom) cycle types t("). Write # := n — ( ) I i> \/7 then:
rec (7,) — log n

T — N(0,1).



I1l. Application: number of records

Records of conjugation-invariant permutations (D. '24)

Let 7, be conjugation-invariant permutations of size n, with (ran-
dom) cycle types t("). Write # := n — ( ) I > \/7 then:

mﬁ,ﬁ)ﬁ — N(0,1).

More generally if /i — oo and /\/—— — «a € [0, 00] in probability:

log n

r(f;?(fn)—log(ﬁ) N SRV S
t," /i + /log () a+1 a+1

where Y and I, are independent A/ (0,1) and Gamma (2, 1) r.v.’s.



Conclusion

The geometric construction can also be used to prove universality

results for:
m Longest monotone subsequences (first order and concentration
inequalities);

m Robinson—Schensted shapes;

m Pattern counts (asymptotic normality with explicit variance,
concentration inequalities, and bounds on the speed of con-

vergence).
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results for:
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inequalities);

m Robinson—Schensted shapes;

m Pattern counts (asymptotic normality with explicit variance,
concentration inequalities, and bounds on the speed of con-

vergence).

Thank you for your attention!



Bonus content

Longest monotone subseq uences

V6 > 0,3cs > 0 s.t. for any conjugation-invariant 7,:

{ P (LDS(7a) < (2—68)V/#) < E [exp (— csH)] ;
P (LDS(7a) > (246)V/#) < E [exp (—csv/i)] -



Bonus content

Robinson—Schensted shape

For any conjugation-invariant 7,, if # — oo:

1
ELDSM/E(Tn) n:)o FVershik—Kerov—Logan—Shepp(r)

in probability, for all r > 0.



Bonus content

Pattern counts

If t:{ n) — = np1 + op(y/n) and 2t( n) — = npz + op(n):

__(n\,,P1
(OCCW(Tn) (1) i > — N (0, XP:P2)
7T€6r

nr—1/2 n—00

for some “explicit” pf* and (Z54?)

m 0 =1/rland £322 >0
u Féray-Kammoun: if p; < 1 then 2%/2 > 0.
m Y0P has rank (r—1)2 if po < 1, and rank r(r—1)/2if pp =1

Occr(1n)—E[Occr (74)] Loy _ By
n dK( V/Var[Ocer (a)] N (022 )> O(n=*/9)if pp <1

P ([Xe(ra) — EDXe(7)] 2 1) < 2650 (222)

m,pES,’




