A geometric approach to conjugation-invariant permutations

Victor Dubach
under the supervision of Valentin Féray

ALEA Days, March 2024

Outline

I. Introduction: conjugation-invariance
II. Tool: a geometric construction
III. Application: number of records

I. Conjugation-invariance

Definition

A random permutation τ is conjugation-invariant if for any given permutation π, it satisfies $\pi \circ \tau \circ \pi^{-1} \stackrel{\text { law }}{=} \tau$.

I. Conjugation-invariance

Definition

A random permutation τ is conjugation-invariant if for any given permutation π, it satisfies $\pi \circ \tau \circ \pi^{-1} \stackrel{\text { law }}{=} \tau$.

If τ is a permutation of $\{1, \ldots, n\}$, we write $t=\left(t_{1}, \ldots, t_{n}\right)$ for its cycle type, where t_{p} denotes the number of p-cycles in τ.

I. Conjugation-invariance

Definition

A random permutation τ is conjugation-invariant if for any given permutation π, it satisfies $\pi \circ \tau \circ \pi^{-1} \stackrel{\text { law }}{=} \tau$.

If τ is a permutation of $\{1, \ldots, n\}$, we write $t=\left(t_{1}, \ldots, t_{n}\right)$ for its cycle type, where t_{p} denotes the number of p-cycles in τ.

Property

τ is conjugation-invariant
conditionally given t, τ is a uniformly random t-cyclic permutation.
\longrightarrow we may study uniform permutations with given cycle types.

I. Conjugation-invariance

A few examples:
■ Uniform permutations
(random cycle type with explicit distribution)

I. Conjugation-invariance

A few examples:

- Uniform permutations (random cycle type with explicit distribution)
- Uniform involutions (random cycle type with $t_{1}+2 t_{2}=n$ and $t_{1} \approx \sqrt{n}$)
- Uniform involutions with no fixed points (deterministic cycle type with $2 t_{2}=n$)

I. Conjugation-invariance

A few examples:

- Uniform permutations (random cycle type with explicit distribution)
- Uniform involutions (random cycle type with $t_{1}+2 t_{2}=n$ and $t_{1} \approx \sqrt{n}$)
- Uniform involutions with no fixed points (deterministic cycle type with $2 t_{2}=n$)
- Ewens random permutations

$$
\mathrm{P}_{\theta}(\tau) \propto \theta^{\sum t_{p}}
$$

and their generalizations.

I. Conjugation-invariance

Aim: to study various statistics of such permutations \longrightarrow monotone subsequences, records, patterns... but how?

I. Conjugation-invariance

Aim: to study various statistics of such permutations
\longrightarrow monotone subsequences, records, patterns... but how?
■ Uniform permutations: many tools (combinatorial, algebraic, geometric, etc.).

- Can be adapted for random involutions, but harder in the broader setting of conjugation-invariance.

I. Conjugation-invariance

Aim: to study various statistics of such permutations
\longrightarrow monotone subsequences, records, patterns... but how?
■ Uniform permutations: many tools (combinatorial, algebraic, geometric, etc.).
■ Can be adapted for random involutions, but harder in the broader setting of conjugation-invariance.
■ Fulman, Kim and Lee: exact computation for the numbers of descents and peaks.

- Kammoun: several universality results via coupling (under assumptions on the number of cycles).
- Hamaker and Rhoades: pattern counts via representation theory (idem).

I. Conjugation-invariance

Aim: to study various statistics of such permutations
\longrightarrow monotone subsequences, records, patterns... but how?
■ Uniform permutations: many tools (combinatorial, algebraic, geometric, etc.).

- Can be adapted for random involutions, but harder in the broader setting of conjugation-invariance.
- Fulman, Kim and Lee: exact computation for the numbers of descents and peaks.
- Kammoun: several universality results via coupling (under assumptions on the number of cycles).
- Hamaker and Rhoades: pattern counts via representation theory (idem).
Here: a geometric approach that works for all cycle types, under minimal hypotheses.
I. Introduction: conjugation-invariance
II. Tool: a geometric construction
III. Application: number of records

II. A geometric construction

Mapping a point set to a permutation

Let $\mathcal{Z}=\left\{Z_{1}=\left(X_{1}, Y_{1}\right), \ldots, Z_{n}=\left(X_{n}, Y_{n}\right)\right\} \subset[0,1]^{2}$ with distinct x-coordinates and distinct y-coordinates. Define $\tau=\operatorname{Perm}(\mathcal{Z})$ by: $\tau(i)=j$ iff the i-th point from the left is the j-th point from the bottom.

$\operatorname{Perm}\left(Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}, Z_{7}\right)=4276315$

II. A geometric construction

Recovering uniform permutations (e.g. Hammersley '70)
Let $\mathcal{Z}=\left\{Z_{1}, \ldots, Z_{n}\right\}$ be i.i.d. Unif $\left([0,1]^{2}\right)$. Then $\tau=\operatorname{Perm}(\mathcal{Z})$ is a uniform permutation of $\{1, \ldots, n\}$.

II. A geometric construction

Recovering uniform permutations (e.g. Hammersley '70)

Let $\mathcal{Z}=\left\{Z_{1}, \ldots, Z_{n}\right\}$ be i.i.d. Unif $\left([0,1]^{2}\right)$. Then $\tau=\operatorname{Perm}(\mathcal{Z})$ is a uniform permutation of $\{1, \ldots, n\}$.

Recovering random involutions (Baik and Rains '99)

Let \mathcal{Z}^{*} be the symmetry of \mathcal{Z} with respect to the diagonal of $[0,1]^{2}$. Then $\tau=\operatorname{Perm}\left(\mathcal{Z} \cup \mathcal{Z}^{*}\right)$ is a uniform involution of $\{1, \ldots, 2 n\}$ with no fixed point.

II. A geometric construction

Recovering uniform permutations (e.g. Hammersley '70)

Let $\mathcal{Z}=\left\{Z_{1}, \ldots, Z_{n}\right\}$ be i.i.d. Unif $\left([0,1]^{2}\right)$. Then $\tau=\operatorname{Perm}(\mathcal{Z})$ is a uniform permutation of $\{1, \ldots, n\}$.

Recovering random involutions (Baik and Rains '99)

Let \mathcal{Z}^{*} be the symmetry of \mathcal{Z} with respect to the diagonal of $[0,1]^{2}$. Then $\tau=\operatorname{Perm}\left(\mathcal{Z} \cup \mathcal{Z}^{*}\right)$ is a uniform involution of $\{1, \ldots, 2 n\}$ with no fixed point.

Idea: the set $\mathcal{Z} \cup \mathcal{Z}^{*}$ is symmetric w.r.t. the diagonal, and has the same x-coordinates as y-coordinates.
If (X, Y) has relative position (i, j) in this set, then (Y, X) has relative position (j, i). Thus $\tau(i)=j$ and $\tau(j)=i$.

II. A geometric construction

Fix a cycle type t of size n. Fix any t-cyclic permutation \mathfrak{s}.

II. A geometric construction

Fix a cycle type t of size n. Fix any t-cyclic permutation \mathfrak{s}.
Recovering uniform t-cyclic permutations (D. '24)
Let $\left(U_{i}\right)_{1 \leq i \leq n}$ be i.i.d. Unif $([0,1])$. For each i, set $Z_{i}:=\left(U_{i}, U_{s}(i)\right)$. Then $\tau=\operatorname{Perm}\left(Z_{i}, 1 \leq i \leq n\right)$ is a uniform t-cyclic permutation.

II. A geometric construction

Fix a cycle type t of size n. Fix any t-cyclic permutation \mathfrak{s}.
Recovering uniform t-cyclic permutations (D. '24)
Let $\left(U_{i}\right)_{1 \leq i \leq n}$ be i.i.d. Unif $([0,1])$. For each i, set $Z_{i}:=\left(U_{i}, U_{5}(i)\right)$. Then $\tau=\operatorname{Perm}\left(Z_{i}, 1 \leq i \leq n\right)$ is a uniform t-cyclic permutation.

Geometric construction of a
($2,1,1,1$)-cyclic permutation.

$$
\begin{aligned}
\tau & =8103741151962 \\
& =(3) \circ(9) \circ(1,8) \circ(4,7,5) \circ(2,10,6,11)
\end{aligned}
$$

II. A geometric construction

Fix a cycle type t of size n. Fix any t-cyclic permutation \mathfrak{s}.
Recovering uniform t-cyclic permutations (D. '24)
Let $\left(U_{i}\right)_{1 \leq i \leq n}$ be i.i.d. Unif $([0,1])$. For each i, set $Z_{i}:=\left(U_{i}, U_{5}(i)\right)$. Then $\tau=\operatorname{Perm}\left(Z_{i}, 1 \leq i \leq n\right)$ is a uniform t-cyclic permutation.

Geometric construction of a
($2,1,1,1$)-cyclic permutation.

$$
\begin{aligned}
\tau & =8103741151962 \\
& =(3) \circ(9) \circ(1,8) \circ(4,7,5) \circ(2,10,6,11)
\end{aligned}
$$

II. A geometric construction

Fix a cycle type t of size n. Fix any t-cyclic permutation \mathfrak{s}.
Recovering uniform t-cyclic permutations (D. '24)
Let $\left(U_{i}\right)_{1 \leq i \leq n}$ be i.i.d. Unif $([0,1])$. For each i, set $Z_{i}:=\left(U_{i}, U_{5}(i)\right)$. Then $\tau=\operatorname{Perm}\left(Z_{i}, 1 \leq i \leq n\right)$ is a uniform t-cyclic permutation.

Geometric construction of a
($2,1,1,1$)-cyclic permutation.

$$
\begin{aligned}
\tau & =8103741151962 \\
& =(3) \circ(9) \circ(1,8) \circ(4,7,5) \circ(2,10,6,11)
\end{aligned}
$$

II. A geometric construction

Fix a cycle type t of size n. Fix any t-cyclic permutation \mathfrak{s}.
Recovering uniform t-cyclic permutations (D. '24)
Let $\left(U_{i}\right)_{1 \leq i \leq n}$ be i.i.d. Unif $([0,1])$. For each i, set $Z_{i}:=\left(U_{i}, U_{5}(i)\right)$. Then $\tau=\operatorname{Perm}\left(Z_{i}, 1 \leq i \leq n\right)$ is a uniform t-cyclic permutation.

Geometric construction of a
($2,1,1,1$)-cyclic permutation.

$$
\begin{aligned}
\tau & =8103741151962 \\
& =(3) \circ(9) \circ(1,8) \circ(4,7,5) \circ(2,10,6,11)
\end{aligned}
$$

II. A geometric construction

Fix a cycle type t of size n. Fix any t-cyclic permutation \mathfrak{s}.
Recovering uniform t-cyclic permutations (D. '24)
Let $\left(U_{i}\right)_{1 \leq i \leq n}$ be i.i.d. Unif $([0,1])$. For each i, set $Z_{i}:=\left(U_{i}, U_{\mathfrak{s}(i)}\right)$. Then $\tau=\operatorname{Perm}\left(Z_{i}, 1 \leq i \leq n\right)$ is a uniform t-cyclic permutation.

Geometric construction of a
($2,1,1,1$)-cyclic permutation.

$$
\begin{aligned}
\tau & =8103741151962 \\
& =(3) \circ(9) \circ(1,8) \circ(4,7,5) \circ(2,10,6,11)
\end{aligned}
$$

II. A geometric construction

Fix a cycle type t of size n. Fix any t-cyclic permutation \mathfrak{s}.
Recovering uniform t-cyclic permutations (D. '24)
Let $\left(U_{i}\right)_{1 \leq i \leq n}$ be i.i.d. Unif $([0,1])$. For each i, set $Z_{i}:=\left(U_{i}, U_{s(i)}\right)$. Then $\tau=\operatorname{Perm}\left(Z_{i}, 1 \leq i \leq n\right)$ is a uniform t-cyclic permutation.

Geometric construction of a ($2,1,1,1$)-cyclic permutation.

$$
\begin{aligned}
\tau & =8103741151962 \\
& =(3) \circ(9) \circ(1,8) \circ(4,7,5) \circ(2,10,6,11)
\end{aligned}
$$

Property: if R is a rectangle which does not intersect the diagonal, it contains $\sim n \cdot \operatorname{Leb}(R)$ i.i.d. uniform points.
I. Introduction: conjugation-invariance
II. Tool: a geometric construction
III. Application: number of records

III. Application: number of records

Definition

A record in τ is an index i s.t. for all $j<i$, we have $\tau(j)<\tau(i)$. $\operatorname{rec}(\tau):=$ number of records in τ.

III. Application: number of records

Definition

A record in τ is an index i s.t. for all $j<i$, we have $\tau(j)<\tau(i)$. $\operatorname{rec}(\tau):=$ number of records in τ.

$$
\tau=\underline{2} 41 \underline{5} 3 \quad ; \quad \operatorname{rec}(\tau)=3
$$

III. Application: number of records

Definition

A record in τ is an index i s.t. for all $j<i$, we have $\tau(j)<\tau(i)$. $\operatorname{rec}(\tau):=$ number of records in τ.

$$
\tau=\underline{2} 41 \underline{5} 3 \quad ; \quad \operatorname{rec}(\tau)=3
$$

Theorem

If τ_{n} is a uniform permutation of size n, then

$$
\frac{\operatorname{rec}\left(\tau_{n}\right)-\log n}{\sqrt{\log n}} \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}} \mathcal{N}(0,1) .
$$

III. Application: number of records

Definition

A record in τ is an index i s.t. for all $j<i$, we have $\tau(j)<\tau(i)$. $\operatorname{rec}(\tau):=$ number of records in τ.
$\tau=\underline{2} 41 \underline{5} 3 \quad ; \quad \operatorname{rec}(\tau)=3$

Theorem

If τ_{n} is a uniform permutation of size n, then

$$
\frac{\operatorname{rec}\left(\tau_{n}\right)-\log n}{\sqrt{\log n}} \underset{n \rightarrow \infty}{\stackrel{(d)}{\rightarrow}} \mathcal{N}(0,1) .
$$

Q: uniform permutations in given conjugacy classes ?

III. Application: number of records

If $\tau=\operatorname{Perm}(\mathcal{Z})$, a point $(X, Y) \in \mathcal{Z}$ corresponds to a record in τ iff there is no other point in its up-left corner $[0, X] \times[Y, 1]$.

III. Application: number of records

If $\tau=\operatorname{Perm}(\mathcal{Z})$, a point $(X, Y) \in \mathcal{Z}$ corresponds to a record in τ iff there is no other point in its up-left corner $[0, X] \times[Y, 1]$.
Consider the box $C=[0,1 / 2] \times[1 / 2,1]$.

III. Application: number of records

If $\tau=\operatorname{Perm}(\mathcal{Z})$, a point $(X, Y) \in \mathcal{Z}$ corresponds to a record in τ iff there is no other point in its up-left corner $[0, X] \times[Y, 1]$.
Consider the box $C=[0,1 / 2] \times[1 / 2,1]$.

III. Application: number of records

Records of conjugation-invariant permutations (D. '24)

Let τ_{n} be conjugation-invariant permutations of size n, with (random) cycle types $t^{(n)}$. Write $\check{n}:=n-t_{1}^{(n)}$. If $\check{n} \gg \frac{n}{\sqrt{\log n}}$ then:

$$
\frac{\operatorname{rec}\left(\tau_{n}\right)-\log n}{\sqrt{\log n}} \longrightarrow \mathcal{N}(0,1)
$$

III. Application: number of records

Records of conjugation-invariant permutations (D. '24)

Let τ_{n} be conjugation-invariant permutations of size n, with (random) cycle types $t^{(n)}$. Write $\check{n}:=n-t_{1}^{(n)}$. If $\check{n} \gg \frac{n}{\sqrt{\log n}}$ then:

$$
\frac{\operatorname{rec}\left(\tau_{n}\right)-\log n}{\sqrt{\log n}} \longrightarrow \mathcal{N}(0,1)
$$

More generally if $\check{n} \rightarrow \infty$ and $\frac{\check{n}}{n / \sqrt{\log n}} \rightarrow \alpha \in[0, \infty]$ in probability:

$$
\frac{\operatorname{rec}\left(\tau_{n}\right)-\log (\check{n})}{t_{1}^{(n)} / \check{n}+\sqrt{\log (\check{n})}} \longrightarrow \frac{\alpha}{\alpha+1} Y+\frac{1}{\alpha+1} \Gamma_{2}
$$

where Y and Γ_{2} are independent $\mathcal{N}(0,1)$ and $\operatorname{Gamma}(2,1)$ r.v.'s.

Conclusion

The geometric construction can also be used to prove universality results for:

- Longest monotone subsequences (first order and concentration inequalities);
■ Robinson-Schensted shapes;
- Pattern counts (asymptotic normality with explicit variance, concentration inequalities, and bounds on the speed of convergence).

Conclusion

The geometric construction can also be used to prove universality results for:

- Longest monotone subsequences (first order and concentration inequalities);
■ Robinson-Schensted shapes;
- Pattern counts (asymptotic normality with explicit variance, concentration inequalities, and bounds on the speed of convergence).

Thank you for your attention!

Bonus content

Longest monotone subsequences

$\forall \delta>0, \exists c_{\delta}>0$ s.t. for any conjugation-invariant τ_{n} :

$$
\left\{\begin{array}{l}
\mathbb{P}\left(\operatorname{LDS}\left(\tau_{n}\right)<(2-\delta) \sqrt{\check{n}}\right) \leq \mathbb{E}\left[\exp \left(-c_{\delta} \check{n}\right)\right] \\
\mathbb{P}\left(\operatorname{LDS}\left(\tau_{n}\right)>(2+\delta) \sqrt{\check{n}}\right) \leq \mathbb{E}\left[\exp \left(-c_{\delta} \sqrt{\check{n}}\right)\right]
\end{array}\right.
$$

Bonus content

Robinson-Schensted shape

For any conjugation-invariant τ_{n}, if $\check{n} \rightarrow \infty$:

$$
\frac{1}{\check{n}} \mathrm{LDS}_{r \sqrt{n}}\left(\tau_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} F_{\text {Vershik-Kerov-Logan-Shepp }}(r)
$$

in probability, for all $r \geq 0$.

Bonus content

Pattern counts

$$
\begin{aligned}
& \text { If } t_{1}^{(n)}=n p_{1}+o_{\mathrm{P}}(\sqrt{n}) \text { and } 2 t_{2}^{(n)}=n p_{2}+o_{\mathrm{P}}(n) \text { : } \\
& \qquad\left(\frac{\operatorname{Occ}_{\pi}\left(\tau_{n}\right)-\binom{n}{r} \mu_{\pi}^{p_{1}}}{n^{r-1 / 2}}\right)_{\pi \in \mathfrak{S}_{r}} \underset{n \rightarrow \infty}{\longrightarrow} \mathcal{N}\left(0, \Sigma^{p_{1}, p_{2}}\right)
\end{aligned}
$$

for some "explicit" $\mu_{\pi}^{p_{1}}$ and $\left(\sum_{\pi, \rho}^{p_{1}, p_{2}}\right)_{\pi, \rho \in \mathfrak{G}_{r}}$.

- $\mu_{\pi}^{0}=1 / r!$ and $\sum_{\pi, \pi}^{0, p_{2}}>0$
- Féray-Kammoun: if $p_{1}<1$ then $\sum_{\pi, \pi}^{p_{1}, p_{2}}>0$.
- $\Sigma^{0, p_{2}}$ has rank $(r-1)^{2}$ if $p_{2}<1$, and rank $r(r-1) / 2$ if $p_{2}=1$
$-d_{K}\left(\frac{\operatorname{Occ}_{\pi}\left(\tau_{n}\right)-\mathbb{E}\left[\operatorname{Occ}_{\pi}\left(\tau_{n}\right)\right]}{\sqrt{\operatorname{Var}\left[\operatorname{Occ} \pi\left(\tau_{n}\right)\right]}}, \mathcal{N}\left(0, \sum_{\pi, \pi}^{p_{1}, p_{2}}\right)\right)=\mathcal{O}\left(n^{-1 / 2}\right)$ if $p_{1}<1$
$\square \mathbb{P}\left(\left|X_{\pi}\left(\tau_{n}\right)-\mathbb{E}\left[X_{\pi}\left(\tau_{n}\right)\right]\right| \geq t\right) \leq 2 \exp \left(\frac{-2 r!}{3} \frac{t^{2}}{n^{r}}\right)$

