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I. Conjugation-invariance

Definition
A random permutation τ is conjugation-invariant if for any given
permutation π, it satisfies π ◦ τ ◦ π−1 law

= τ .

If τ is a permutation of {1, . . . , n}, we write t = (t1, . . . , tn) for its
cycle type, where tp denotes the number of p-cycles in τ .

Property

τ is conjugation-invariant
⇐⇒
conditionally given t, τ is a uniformly random t-cyclic permutation.

−→ we may study uniform permutations with given cycle types.
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I. Conjugation-invariance

A few examples:
Uniform permutations
(random cycle type with explicit distribution)

Uniform involutions
(random cycle type with t1 + 2t2 = n and t1 ≈

√
n)

Uniform involutions with no fixed points
(deterministic cycle type with 2t2 = n)
Ewens random permutations

Pθ(τ) ∝ θ
∑

tp

and their generalizations.
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I. Conjugation-invariance

Aim: to study various statistics of such permutations
−→ monotone subsequences, records, patterns... but how?

Uniform permutations: many tools (combinatorial, algebraic,
geometric, etc.).
Can be adapted for random involutions, but harder in the broader
setting of conjugation-invariance.
Fulman, Kim and Lee: exact computation for the numbers of
descents and peaks.
Kammoun: several universality results via coupling (under as-
sumptions on the number of cycles).
Hamaker and Rhoades: pattern counts via representation theory
(idem).

Here: a geometric approach that works for all cycle types, under
minimal hypotheses.
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II. A geometric construction

Mapping a point set to a permutation

Let Z = {Z1 = (X1,Y1), . . . ,Zn = (Xn,Yn)} ⊂ [0, 1]2 with distinct
x-coordinates and distinct y-coordinates. Define τ = Perm (Z) by:
τ(i) = j iff the i-th point from the left is the j-th point from the
bottom.

Z1

Z2

Z5

Perm(Z1, Z2, Z3, Z4, Z5, Z6, Z7) = 4 2 7 6 3 1 5

Z3

Z4

Z7

Z6



II. A geometric construction

Recovering uniform permutations (e.g. Hammersley ’70)

Let Z = {Z1, . . . ,Zn} be i.i.d. Unif
(
[0, 1]2

)
. Then τ = Perm (Z)

is a uniform permutation of {1, . . . , n}.

Recovering random involutions (Baik and Rains ’99)

Let Z∗ be the symmetry of Z with respect to the diagonal of [0, 1]2.
Then τ = Perm (Z ∪ Z∗) is a uniform involution of {1, . . . , 2n} with
no fixed point.

Idea: the set Z ∪ Z∗ is symmetric w.r.t. the diagonal, and has the
same x-coordinates as y-coordinates.
If (X ,Y ) has relative position (i , j) in this set, then (Y ,X ) has
relative position (j , i). Thus τ(i) = j and τ(j) = i .
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II. A geometric construction

Fix a cycle type t of size n. Fix any t-cyclic permutation s.

Recovering uniform t-cyclic permutations (D. ’24)

Let (Ui )1≤i≤n be i.i.d. Unif ([0, 1]). For each i , set Zi :=
(
Ui ,Us(i)

)
.

Then τ = Perm (Zi , 1 ≤ i ≤ n) is a uniform t-cyclic permutation.

Geometric construction of a
(2, 1, 1, 1)-cyclic permutation.

τ = 8 10 3 7 4 11 5 1 9 6 2
= (3)◦(9)◦(1, 8)◦(4, 7, 5)◦(2, 10, 6, 11)

Property: if R is a rectangle which
does not intersect the diagonal, it
contains ∼ n·Leb(R) i.i.d. uniform
points.
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III. Application: number of records

Definition
A record in τ is an index i s.t. for all j < i , we have τ(j) < τ(i).
rec (τ) := number of records in τ .

τ = 2 4 1 5 3 ; rec (τ) = 3

Theorem
If τn is a uniform permutation of size n, then

rec (τn)− log n√
log n

(d)−→
n→∞

N (0, 1) .

Q: uniform permutations in given conjugacy classes ?
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III. Application: number of records

If τ = Perm (Z), a point (X ,Y ) ∈ Z corresponds to a record in τ
iff there is no other point in its up-left corner [0,X ]× [Y , 1].

Consider the box C = [0, 1/2]× [1/2, 1].

Zleft

ZC
left

ZC
up

Zup

I.I.D. points

Few points

Fixed points

Few points Fixed points
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III. Application: number of records

Records of conjugation-invariant permutations (D. ’24)

Let τn be conjugation-invariant permutations of size n, with (ran-
dom) cycle types t(n). Write ň := n − t

(n)
1 . If ň ≫ n√

log n
then:

rec (τn)− log n√
log n

−→ N (0, 1) .

More generally if ň → ∞ and ň
n/

√
log n

→ α ∈ [0,∞] in probability:

rec (τn)− log (ň)

t
(n)
1 /ň +

√
log (ň)

−→ α

α+ 1
Y +

1
α+ 1

Γ2

where Y and Γ2 are independent N (0, 1) and Gamma (2, 1) r.v.’s.



III. Application: number of records

Records of conjugation-invariant permutations (D. ’24)

Let τn be conjugation-invariant permutations of size n, with (ran-
dom) cycle types t(n). Write ň := n − t
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Conclusion

The geometric construction can also be used to prove universality
results for:

Longest monotone subsequences (first order and concentration
inequalities);
Robinson–Schensted shapes;
Pattern counts (asymptotic normality with explicit variance,
concentration inequalities, and bounds on the speed of con-
vergence).

Thank you for your attention!
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Bonus content

Longest monotone subsequences

∀δ > 0, ∃cδ > 0 s.t. for any conjugation-invariant τn:{
P
(
LDS(τn) < (2−δ)

√
ň
)
≤ E

[
exp

(
− cδň

)]
;

P
(
LDS(τn) > (2+δ)

√
ň
)
≤ E

[
exp

(
−cδ

√
ň
)]

.



Bonus content

Robinson–Schensted shape

For any conjugation-invariant τn, if ň → ∞:

1
ň
LDSr

√
ň(τn) −→

n→∞
FVershik-Kerov-Logan-Shepp(r)

in probability, for all r ≥ 0.



Bonus content

Pattern counts
If t(n)1 = np1 + oP(

√
n) and 2t(n)2 = np2 + oP(n):(

Occπ(τn)−
(n
r

)
µp1
π

nr−1/2

)
π∈Sr

−→
n→∞

N (0,Σp1,p2)

for some “explicit” µp1
π and

(
Σp1,p2
π,ρ

)
π,ρ∈Sr

.

µ0
π = 1/r ! and Σ0,p2

π,π > 0
Féray–Kammoun: if p1 < 1 then Σp1,p2

π,π > 0.
Σ0,p2 has rank (r−1)2 if p2 < 1, and rank r(r−1)/2 if p2 = 1

dK

(
Occπ(τn)−E[Occπ(τn)]√

Var[Occπ(τn)]
, N

(
0,Σp1,p2

π,π

))
= O(n−1/2) if p1 < 1

P
(
|Xπ(τn)− E [Xπ(τn)]| ≥ t

)
≤ 2 exp

(
−2r !

3
t2

nr

)


