Asymptotics of Longest Increasing Subsequences in random permutations

Victor Dubach
Université de Lorraine, IECL

Context

LIS and RS-shape of a permutation

Let σ be a permutation of $\{1, \ldots, n\}$. An increasing subsequence of σ is a sequence of indices $i_{1}<$ $\cdots<i_{\ell}$ satisfying $\sigma\left(i_{1}\right)<\cdots<\sigma\left(i_{\ell}\right)$. Denote by $\operatorname{LIS}_{k}(\sigma)$ the maximal size of a union of k increasing subsequences of σ.
Robinson-Schensted's correspondence maps σ to a pair of standard Young tableaux with a common shape. For example the RS tableaux of the permu tation $\sigma=4276135$ are

The link between these objects: Greene's theorem stating that $\operatorname{LIS}_{k}(\sigma)$ is the number of boxes in the k first rows of σ 's RS tableaux.

Random permutations sampled from a permuton
Define a permuton to be a probability measure on $[0,1]^{2}$ with uniform marginals.
If μ is a permuton, use it to sample n i.i.d. points Z_{1}, \ldots, Z_{n}. Then set $\sigma(i)=j$ iff the i-th point from the left is j-th from the bottom.
\leadsto random permutation of law Sample $_{n}(\mu)$

Problem
What are the asymptotics as $n \rightarrow \infty$ of $\operatorname{LIS}_{k}\left(\sigma_{n}\right)$ and $\operatorname{RS}\left(\sigma_{n}\right)$ if $\sigma_{n} \sim \operatorname{Sample}_{n}(\mu)$?

Current litterature: \sqrt{n} scaling limits

The well known uniform case

When $\mu=$ Leb on $[0,1]^{2}, \sigma_{n}$ is uniform. Vershik and Kerov [5] showed that

$$
\frac{\operatorname{LIS}_{1}\left(\sigma_{n}\right)}{\sqrt{n}} \underset{n \rightarrow \infty}{\longrightarrow} 2
$$

in probability.
More generally: \sqrt{n} scaling limit for the RS shape of σ_{n}, i.e. non-trivial limit of $\frac{1}{n} \mathrm{LIS}_{x \sqrt{n}}\left(\sigma_{n}\right)$ for $x \in[0,2]$.
Below, the P-tableau of a size 10000 uniform permutation:

When the permuton has a density

When μ has a positive \mathcal{C}_{b}^{1} density ρ on $[0,1]^{2}$, Deuschel and Zeitouni [1] proved:

$$
\frac{\operatorname{LIS}_{1}\left(\sigma_{n}\right)}{\sqrt{n}} \underset{n \rightarrow \infty}{\longrightarrow} K_{\rho}
$$

in probability, for some positive constant K_{ρ} defined by a variational problem.

Sjöstrand [4] also investigated the limit shape of σ_{n} after \sqrt{n} renormalization, generalizing the limit shape of uniform permutations.

When the permuton density is allowed to diverge, we showed in [3] that $\operatorname{LIS}\left(\sigma_{n}\right)$ could behave as any given power of n (up to logarithmic factors).

Our study: linear scaling limits

Shape of a permuton

Say a subset of $[0,1]^{2}$ is nondecreasing when it is totally ordered for the natural partial order of the plane. Define

$$
\widetilde{\mathrm{LIS}}_{k}(\mu):=\max _{A_{1}, \ldots, A_{k} \text { all nondecreasing }} \mu\left(A_{1} \cup \cdots \cup A_{k}\right)
$$

This extends in a sense the notion of longest increasing subsequence to permutons. We can then define the RS shape of a permuton μ as:

$$
\widetilde{\operatorname{sh}}(\mu):=\left(\widetilde{\operatorname{LIS}}_{k}(\mu)-\widetilde{\operatorname{LIS}}_{k-1}(\mu)\right)_{k \in \mathbb{N}^{*}}
$$

Below, a permuton with finite RS shape (0.6, 0.4):

Convergence results

Theorem [2]. If $\sigma_{n} \sim \operatorname{Sample}_{n}(\mu)$ then for any $k \in \mathbb{N}^{*}$ the following convergence holds almost surely:

$$
\frac{\operatorname{LIS}_{k}\left(\sigma_{n}\right)}{n} \underset{n \rightarrow \infty}{ } \widetilde{\operatorname{LIS}}_{k}(\mu)
$$

In particular we deduce the almost sure convergence of RS shapes. Also : partial large deviation results [2]. Below, a permutation of size 24 sampled from the previous permuton.

A discrete algorithm: Fomin inverse rules

Robinson-Schensted's correspondence can be computed through Fomin's local rules: label each vertex of a grid with a diagram, and use local rules to construct these diagrams step by step. On the right and top borders: P - and Q-tableaux of the permutation.
Equivalently we can use integer labels on the edges, see example below for $\sigma=35142$.

A continuous analogue: differential equations

Define the RS tableaux of a permuton μ as

$$
\left.\widetilde{\operatorname{RS}}(\mu):=\left(\widetilde{\lambda}^{\mu}(1, \cdot), \widetilde{\lambda}^{\mu} \cdot, \cdot 1\right)\right)
$$

where for any $(x, y) \in[0,1]^{2}$:

$$
\widetilde{\lambda}^{\mu}(x, y)=\left(\widetilde{\lambda}_{k}^{\mu}(x, y)\right)_{k \in \mathbb{N}^{*}}:=\widetilde{\operatorname{sh}}\left(\left.\mu\right|_{[0, x] \times[0, y]}\right)
$$

Previous results imply convergence of RS tableaux. Moreover Fomin's inverse local rules yield differential equations in the permuton limit:

Theorem [2]. Suppose $\widetilde{\operatorname{LIS}}_{r}(\mu)=1$ for some $r \in \mathbb{N}^{*}$ and let $\left.\left.(x, y) \in\right] 0,1\right]^{2}$ be s.t.

$$
\alpha_{k}:=\partial_{x}^{-} \tilde{\lambda}_{k}(x, y) \quad \text { and } \quad \beta_{k}:=\partial_{y}^{-} \tilde{\lambda}_{k}(x, y)
$$

for $k \in \llbracket 1, r \rrbracket$ all exist. Then for any $s, t \geq 0$ and $k \in \llbracket 1, r \rrbracket$:

$$
\lim _{\epsilon \rightarrow 0^{+}} \frac{\widetilde{\lambda}_{k}(x, y)-\widetilde{\lambda}_{k}(x-t \epsilon, y-s \epsilon)}{\epsilon}=\phi\left(\left(t \alpha_{i}\right)_{k \leq i \leq r},\left(s \beta_{i}\right)_{k \leq i \leq r}\right)
$$

for some continuous function ϕ

Informally: asymptotically and locally, σ_{n} 's random edge labels behave as if they were ordered in a decreasing way.
In the proof we introduce an adapted equivalence relation on words of labels and show that it is implied by Knuth equivalence. Global idea: the P-tableau of a long random word on bounded letters is similar to the P-tableau of this word's decreasing reordering.

References

[1] Jean-Dominique Deuschel and Ofer Zeitouni. "Limiting curves for i.i.d. records". In: The Annals of Probability 23.2 (1995), pp. 852-878.
[2] Victor Dubach. "Increasing subsequences of linear size in random permutations and the Robinson-Schensted tableaux of permutons". In preparation. 2023.
[3] Victor Dubach. "Locally uniform random permutations with large increasing subsequences". Submitted, preprint arXiv:2301.07658. 2023.
[4] Jonas Sjöstrand. "Monotone subsequences in locally uniform random permutations". In: (2022). arXiv: 2207.11505.
[5] Anatoli M. Vershik and Sergueï V. Kerov. "Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux". In: Soviet Math. Dokl. 18 (1977), pp. 527-531.

