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Context

LIS and RS-shape of a permutation

Let σ be a permutation of {1, . . . , n}. An increasing
subsequence of σ is a sequence of indices i1 <
· · · < iℓ satisfying σ(i1) < · · · < σ(iℓ). Denote by
LISk(σ) the maximal size of a union of k increasing
subsequences of σ.
Robinson-Schensted’s correspondence maps σ
to a pair of standard Young tableaux with a common
shape. For example the RS tableaux of the permu-
tation σ = 4 2 7 6 1 3 5 are:

P (σ) = 1 3 5

2 6

4 7

, Q(σ) = 1 3 7

2 4

5 6

.

The link between these objects: Greene’s theorem,
stating that LISk(σ) is the number of boxes in the k
first rows of σ’s RS tableaux.

Random permutations sampled from a permuton

Define a permuton to be a probability measure on
[0, 1]2 with uniform marginals.
If µ is a permuton, use it to sample n i.i.d. points
Z1, . . . , Zn. Then set σ(i) = j iff the i-th point from
the left is j-th from the bottom.
⇝ random permutation of law Samplen(µ).

Z1

Z2

Z5

Perm(Z1, Z2, Z3, Z4, Z5, Z6, Z7) = 4 2 7 6 1 3 5

Z3

Z4

Z7

Z6

Problem

What are the asymptotics as n → ∞ of LISk (σn) and RS (σn) if σn ∼ Samplen(µ) ?

Current litterature:
√
n scaling limits

The well known uniform case

When µ = Leb on [0, 1]2, σn is uniform.
Vershik and Kerov [5] showed that

LIS1(σn)√
n

−→
n→∞

2

in probability.
More generally:

√
n scaling limit for the

RS shape of σn, i.e. non-trivial limit of
1
nLISx

√
n(σn) for x ∈ [0, 2].

Below, the P-tableau of a size 10000 uni-
form permutation:

When the permuton has a density

When µ has a positive C1b density ρ

on [0, 1]2, Deuschel and Zeitouni [1]
proved:

LIS1(σn)√
n

−→
n→∞

Kρ

in probability, for some positive constant
Kρ defined by a variational problem.

Sjöstrand [4] also investigated the limit
shape of σn after

√
n renormalization,

generalizing the limit shape of uniform
permutations.

When the permuton density is allowed
to diverge, we showed in [3] that LIS(σn)
could behave as any given power of n
(up to logarithmic factors).

Our study: linear scaling limits

Shape of a permuton

Say a subset of [0, 1]2 is nondecreasing when it is totally ordered for the natural partial
order of the plane. Define

L̃ISk(µ) := max
A1,...,Ak all nondecreasing

µ (A1 ∪ · · · ∪ Ak) .

This extends in a sense the notion of longest increasing subsequence to permutons.
We can then define the RS shape of a permuton µ as:

s̃h(µ) :=
(
L̃ISk(µ)− L̃ISk−1(µ)

)
k∈N∗ .

Below, a permuton with finite RS shape (0.6, 0.4):
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0.3

0.2

0.2

Convergence results

Theorem [2]. If σn ∼ Samplen(µ) then for any k ∈ N∗ the following convergence holds almost surely:

LISk(σn)
n −→

n→∞
L̃ISk(µ).

In particular we deduce the almost sure convergence of RS shapes. Also : partial large deviation results [2].
Below, a permutation of size 24 sampled from the previous permuton.

A discrete algorithm: Fomin inverse rules

Robinson-Schensted’s correspondence can be computed through Fomin’s local rules: label each vertex of a
grid with a diagram, and use local rules to construct these diagrams step by step. On the right and top borders:
P- and Q-tableaux of the permutation.
Equivalently we can use integer labels on the edges, see example below for σ = 3 5 1 4 2.
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The inverse algorithm uses the following simple local rules:

0

0

0

00

0 ;

i

i

i

ii−1

i−1

i ≥ 1

;

i

j

i

jj

i

i 6= j

.

A continuous analogue: differential equations

Define the RS tableaux of a permuton µ as

R̃S(µ) :=
(
λ̃µ(1, ·), λ̃µ(·, 1)

)
where for any (x, y) ∈ [0, 1]2:

λ̃µ(x, y) =
(
λ̃
µ
k(x, y)

)
k∈N∗ := s̃h

(
µ|[0,x]×[0,y]

)
Previous results imply convergence of RS tableaux. Moreover Fomin’s inverse local rules
yield differential equations in the permuton limit:

Theorem [2]. Suppose L̃ISr(µ) = 1 for some r ∈ N∗ and let (x, y) ∈]0, 1]2 be s.t.

αk := ∂−x λ̃k(x, y) and βk := ∂−y λ̃k(x, y)

for k ∈ [[1, r]] all exist. Then for any s, t ≥ 0 and k ∈ [[1, r]]:

lim
ϵ→0+

λ̃k(x,y)−λ̃k(x−tϵ,y−sϵ)
ϵ = ϕ

(
(tαi)k≤i≤r, (sβi)k≤i≤r

)
for some continuous function ϕ.

Informally: asymptotically and locally, σn’s random edge labels behave as if they were
ordered in a decreasing way.
In the proof we introduce an adapted equivalence relation on words of labels and show that
it is implied by Knuth equivalence. Global idea: the P-tableau of a long random word on
bounded letters is similar to the P-tableau of this word’s decreasing reordering.
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