# ASYMPTOTICS OF LONGEST INCREASING SUBSEQUENCES IN RANDOM PERMUTATIONS

Victor Dubach Université de Lorraine, IECL



## Context

### LIS and RS-shape of a permutation

Let  $\sigma$  be a permutation of  $\{1, \ldots, n\}$ . An increasing subsequence of  $\sigma$  is a sequence of indices  $i_1 < i_2$  $\cdots < i_{\ell}$  satisfying  $\sigma(i_1) < \cdots < \sigma(i_{\ell})$ . Denote by  $LIS_k(\sigma)$  the maximal size of a union of k increasing subsequences of  $\sigma$ .

**Robinson-Schensted's correspondence** maps  $\sigma$ to a pair of standard Young tableaux with a common shape. For example the RS tableaux of the permutation  $\sigma = 4\ 2\ 7\ 6\ 1\ 3\ 5$  are:



### Random permutations sampled from a permuton

Define a permuton to be a probability measure on  $[0,1]^2$  with uniform marginals.

If  $\mu$  is a permuton, use it to sample *n* i.i.d. points  $Z_1, \ldots, Z_n$ . Then set  $\sigma(i) = j$  iff the *i*-th point from the left is j-th from the bottom.  $\sim$  random permutation of law  $\text{Sample}_n(\mu)$ .



## Current litterature: $\sqrt{n}$ scaling limits

## The well known uniform case

When 
$$\mu = \text{Leb}$$
 on  $[0, 1]^2$ ,  $\sigma_n$  is uniform.  
Vershik and Kerov [5] showed that

$$\frac{\mathrm{LIS}_1(\sigma_n)}{\sqrt{n}} \xrightarrow[n \to \infty]{} 2$$

### in probability.

More generally:  $\sqrt{n}$  scaling limit for the RS shape of  $\sigma_n$ , *i.e.* non-trivial limit of  $\frac{1}{n}$ LIS $_{x\sqrt{n}}(\sigma_n)$  for  $x \in [0, 2]$ . Below, the P-tableau of a size 10000 uniform permutation:

## When the permuton has a density When $\mu$ has a positive $C_b^1$ density $\rho$ on $[0,1]^2$ , Deuschel and Zeitouni [1] proved: $\frac{\mathrm{LIS}_1(\sigma_n)}{\sqrt{n}} \xrightarrow[n \to \infty]{} K_\rho$

in probability, for some positive constant  $K_{\rho}$  defined by a variational problem.

Sjöstrand [4] also investigated the limit shape of  $\sigma_n$  after  $\sqrt{n}$  renormalization, generalizing the limit shape of uniform

Problem

What are the asymptotics as  $n \to \infty$  of  $\text{LIS}_k(\sigma_n)$  and  $\text{RS}(\sigma_n)$  if  $\sigma_n \sim \text{Sample}_n(\mu)$ ?



permutations.

When the permuton density is allowed to diverge, we showed in [3] that  $LIS(\sigma_n)$ could behave as any given power of *n* (up to logarithmic factors).

## Our study: linear scaling limits

## Shape of a permuton

Say a subset of  $[0,1]^2$  is nondecreasing when it is totally ordered for the natural partial order of the plane. Define

$$\widetilde{\mathrm{IS}}_{k}(\mu) := \max_{A_{1},\ldots,A_{k} \text{ all nondecreasing}} \mu\left(A_{1} \cup \cdots \cup A_{k}\right).$$

This extends in a sense the notion of longest increasing subsequence to permutons. We can then define the **RS shape of a permuton**  $\mu$  as:

$$\widetilde{\mathrm{sh}}(\mu) := \left(\widetilde{\mathrm{LIS}}_k(\mu) - \widetilde{\mathrm{LIS}}_{k-1}(\mu)\right)_{k \in \mathbb{N}^*}$$

Below, a permuton with finite RS shape (0.6, 0.4):

**Theorem [2].** If  $\sigma_n \sim \text{Sample}_n(\mu)$  then for any  $k \in \mathbb{N}^*$  the following convergence holds almost surely:

$$\frac{\mathrm{LIS}_k(\sigma_n)}{n} \xrightarrow[n \to \infty]{} \widetilde{\mathrm{LIS}}_k(\mu).$$

**Convergence results** 

In particular we deduce the almost sure **convergence of RS shapes**. Also : partial large deviation results [2]. Below, a permutation of size 24 sampled from the previous permuton.



 $\operatorname{sh}(\sigma) =$ 





### A discrete algorithm: Fomin inverse rules

Robinson-Schensted's correspondence can be computed through Fomin's local rules: label each vertex of a grid with a diagram, and use local rules to construct these diagrams step by step. On the right and top borders: P- and Q-tableaux of the permutation.

Equivalently we can use integer labels on the edges, see example below for  $\sigma = 35142$ .





### A continuous analogue: differential equations

Define the **RS tableaux of a permuton**  $\mu$  as

$$\widetilde{\mathrm{RS}}(\mu) := \left(\widetilde{\lambda}^{\mu}(1, \cdot), \widetilde{\lambda}^{\mu}(\cdot, 1)\right)$$

where for any  $(x, y) \in [0, 1]^2$ :

$$\widetilde{\lambda}^{\mu}(x,y) = \left(\widetilde{\lambda}^{\mu}_{k}(x,y)\right)_{k \in \mathbb{N}^{*}} := \widetilde{\mathrm{sh}}\left(\mu|_{[0,x] \times [0,y]}\right)$$

Previous results imply convergence of RS tableaux. Moreover Fomin's inverse local rules yield differential equations in the permuton limit:

**Theorem [2].** Suppose  $\widetilde{\text{LIS}}_r(\mu) = 1$  for some  $r \in \mathbb{N}^*$  and let  $(x, y) \in [0, 1]^2$  be s.t.  $\alpha_k := \partial_x^- \widetilde{\lambda}_k(x, y)$  and  $\beta_k := \partial_y^- \widetilde{\lambda}_k(x, y)$ for  $k \in [\![1, r]\!]$  all exist. Then for any  $s, t \ge 0$  and  $k \in [\![1, r]\!]$ :  $\lim_{\epsilon} \frac{\widetilde{\lambda}_k(x,y) - \widetilde{\lambda}_k(x - t\epsilon, y - s\epsilon)}{\epsilon} = \phi((t\alpha_i)_{k \le i \le r}, (s\beta_i)_{k \le i \le r})$  $\epsilon \rightarrow 0^+$ 

for some continuous function  $\phi$ .

Informally: asymptotically and locally,  $\sigma_n$ 's random edge labels behave as if they were ordered in a decreasing way.

In the proof we introduce an adapted equivalence relation on words of labels and show that it is implied by Knuth equivalence. Global idea: the P-tableau of a long random word on bounded letters is similar to the P-tableau of this word's decreasing reordering.

## References

- Jean-Dominique Deuschel and Ofer Zeitouni. "Limiting curves for i.i.d. records". In: The Annals of Probability 23.2 (1995), pp. 852–878.
- Victor Dubach. "Increasing subsequences of linear size in random permutations and the Robinson-Schensted tableaux of permutons". In preparation. 2023. [2]
- Victor Dubach. "Locally uniform random permutations with large increasing subsequences". Submitted, preprint arXiv:2301.07658. 2023.
- Jonas Sjöstrand. "Monotone subsequences in locally uniform random permutations". In: (2022). arXiv: 2207.11505.
- Anatoli M. Vershik and Sergueï V. Kerov. "Asymptotics of the Plancherel measure of the symmetric group and the limit form of Young tableaux". In: Soviet Math. Dokl. 18 (1977), pp. 527–531. [5]